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Introduction

Query-by-Example speech search (QbE): matching spoken queries to utterances
within a search collection

Prior work
Dynamic time warping (DTW) based approach

» Rely on the quality of the frame representations (phone posterior, bottleneck
features, ...)

» O(NM) time complexity. N and M are segment lengths.

> Need special modification to work on approximate query matches. Best systems
on benchmark QbE tasks often fuse many systems together.

Embedding-based approach
» Improve speed and performance

» Focus on English data and on single-word queries



Motivation

Apply embedding-based QbE to more general settings
» Arbitrary length queries

» Multiple zero-resource target languages
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Contribution 1: Embedding-based QbE on multiple unseen languages

Embedding-based QbE can be effectively applied to multiple unseen languages by using
embeddings learned on languages with available data.
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Contribution 2: Acoustic span embeddings (ASE)

Acoustic span embedding (ASE) f; Acoustically grounded span embedding (AGSE) gs
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Evaluation result: Our QbE system is fast, accurate, and simple

QUESST 2015 QbE search task
» 6 low-resource languages
» Challenging acoustic conditions

» Exact and approximate match
query settings

Our approach
» Qutperforms all prior work on this
benchmark
» Much faster than (naive)
DTW-based search

» Single ASE model works well in
both settings

Method # systems minCye |
BNF+DTW [11] 36 0.778
BNF+DTW [26] 66 0.757
Best prior fusion [7] 4 0.723
ASE(mean) 1 0.706
ASE(mean + concat) 2 0.670




More details

Multilingual embedding-based QbE
» Acoustic word embedding (AWE)
» Acoustic span embedding (ASE)

» Search component

Experimental setup
» Embedding model
» QbE system

Evaluation
> QUESST 2015 QbE task

» Evaluation metrics

Results
» Comparison with prior work
» Query sub-tasks
> Run time

Conclusion



Multilingual jointly trained acoustic and written word embeddings
Map spoken word signals and written words from multiple languages to embeddings in

a shared space [Hu+ 2020
» Same-word signals should have similar vectors: factor out speaker, acoustic

environment, ...
» Signals from different words should be embedded farther apart
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Contextual acoustic word embeddings (AWE)

Acoustic word embedding (AWE) f,, Acoustically grounded word embedding (AGWE) gy,
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Acoustic span embeddings (ASE)

Acoustic span embedding (ASE) f; Acoustically grounded span embedding (AGSE) gs
» Goal: better model spans of £.(X1) f:(X2)
multiple words in queries and ‘ !
search utterances
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Embedding-based QbE system

Given a pre-trained embedding model

» Build an index of utterances in the search collection by embedding all possible
segments (sliding window with several window sizes)

» Given an audio query, embed the query and compute a detection score for each

utterance by the cosine similarity between the embedding vectors
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Experimental setup

Embedding model

Training data
» 11 Babel languages + Switchboard English
» X-SAMPA phones
» 36d standard log-Mel spectral features + 3d pitch features
» SpecAugment

Model
» Acoustic view: 6-BiGRU (256d) — 512d embedding
» Written view: 1-BiGRU (256d) — 1-BiGRU (256d) — 512d embedding

QbE system
» Window sizes {12,15,18,...,30,36,42,48,...,120}
» For query (length Iy), compare with all windowed segments with length between
Zlq and %1,



QUESST 2015 query-by-example search task

6 languages: Albanian, Czech, Mandarin, Portuguese, Romanian, and Slovak
Size: 18 hours search collection. 445 development queries and 447 test queries.

Three types of queries:
> T1: exact match
> T2: allowing word reordering and lexical variations

> T3: like T2, but conversational queries in context

Acoustic condition: artificially added noise and reverberation



Evaluation metrics

Normalized cross entropy (Cnxe)

» Ratio between the cross entropy of the QbE system output scores and random
scoring

> Ranges from 0 to 1. The smaller, the better

Term weighted value (TWV)
» Computed by miss rate and false alarm rate: 1 — (Ppiss(0) + BP(0))
» Ranges from —f3 to 1. The bigger, the better



Results: Comparison with prior work

Table 1. QUESST 2015 performance on dev and eval sets measured by minCy . and mazTW'V. Training languages are
separated into in- and out-of-domain. All SAD systems are based on phone recognizers.

Method systems languages labeled data® SAD Augmentation minChg. |/ macTWV +
in  out hours dev eval

Top prior results

BNF+DTW [11] 36 2 4 384+ Yes noise 0.778/0.234  0.787/0.206
BNF+DTW [26] 66 2 15 643+ Yes noise + reverb  0.757/0.286  0.747/0.274
Exact match fusion [7] 2 0 2 423 Yes noise + reverb  0.795/0.256
Partial match + symbolic [7] 2 0 1 260 Yes noise + reverb  0.783/0.231
Fusion of above two [7] 4 0 2 423 Yes noise + reverb  0.723/0.320
Our systems
AWE (concat) 1 0 12 664 0.845/0.084
AWE (mean) 1 0 12 664 0.803/0.101
AWE (mean) 1 0 12 664 SpecAugment  0.782/0.135
ASE (concat) 1 0 12 664 0.753/0.193
ASE (mean) 1 0 12 664 0.728/0.239
ASE (mean) 1 0 12 664 SpecAugment  0.706/0.255  0.692/0.246
ASE (mean+concat) 2 0 12 664 SpecAugment  0.670/0.323  0.658 / 0.298




Dependence on query sub-task
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ASE models are better at accommodating lexical variations and word reordering than
DTW-based systems without sacrificing too much performance on exact matches



Run time

The average per-query run times of our implementations of ASE-based and
DTW-based QbE search. Tested on a single thread of a CPU.

» Naive ASE is much faster than naive DTW
» Both ASE and DTW could be sped up with approximations (future work)

Table 2. Run times on the QUESST 2015 development set.

# of comparisons ~ Run-time

Method

(per query) (s / query)
DTW on Filterbank features 600K 486
DTW on ASE hidden states 600K 847

ASE-based QbE 4M 5




Conclusion and future work

A simple embedding-based approach for multilingual query-by-example search
» Qutperforms prior work on the QUESST 2015 QbE task, while also being much
more efficient.
» Demonstrates that multilingual acoustic word embedding (AWE) models can be
effective for query-by-example search on unseen target languages

» Extends embedding-based QbE to multi-word spans using acoustic span
embeddings (ASE)

Future work: use both the acoustic and written view embedding models to search by
either spoken or written query



